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The study of EGRET/TASC flare data has been funded during phases 3-6 of the CGRO Guest

Investigator program. The funding and accomplishments can be summarized as follows:

Phase 3. - Under PI Dr. David L. Bertsch (GSFC) the proposal "Use of EGRET High-Energy

Capability to Investigate Energetic Solar Flare Processes" was funded with E. L. Chupp and P. P.

Dunphy as Co-Investigators at a level of $15,500 instead of the $22,000 requested (NAG 5-2420).

Under Phase 3 support the accomplishments were:

UNH was assigned the responsibility to use their accelerator neutron measurements to verify the

TASC response function and to modify the TASC fitting program to include a high energy neutron

contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies

for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo

TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than

the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for

207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV

neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was

considered to be sufficiently accurate to generate a neutron response library to be used by UNH in

modifying the TASCfitting program to include a neutron component in the flare spectrun modeling.

TASCenergy-loss data on the 1991 June 11 flare was transferred to UNH.

Phase 4. - Under PI Dr. E. L. Chupp the proposal "Study of High Energy Neutrons and Gamma-

Rays Using the EGRET/TASC" was funded at a level of $30,000 (Supplement 1) while the level



requestedfor theproposedworkwas$49,000.UnderPI Dr. DavidL. Bertschthe proposal"Investi-
gationof EnergeticSolarFlareProcessesUsingtheHighEnergyCapabilitiesof EGRET" provided

UNH Co-Investigators Chupp and Dunphy with $16,796 of additional funding (Supplement 2) to

continue the work started under the phase 3 program instead of the requested amount of $25,000.

Under Phase _ the accomplishments were:

The Phase 3 effort to determine a high energy neutron contribution to the emissions from the 1991

June 11 solar flare was continued. A preliminary upper limit to the neutron fluence (> 50 MeV)

from this flare was found by adding a theoretical solar neutron spectrum to the TASC spectral

fit program. The result was <27 neutrons cm -2 which corresponds to < 2.2 x 102s neutrons sr -1

(> 50 MeV) emitted from the Sun toward the Earth. This is about a factor of 10 less than the

neutron emissivity from the 1982 June 3 solar flare. This result was presented by P. P. Dunphy, E.

L. Chupp, D. L. Bertsch, E. J. Schneid, and S. Gottesman at the 24th International Cosmic Ray

Conference at Rome in September 1995. Subsequently, the TASC spectral fitting program has been

modified to include components from: */-ray lines (solar and background), bremsstrahlung, neutral

pion decay and high energy neutron interactions.

The next step in the analysis of this event, was doing full fits to the TASC energy-loss spectra as a

function of time. A significant hardening of the solar proton spectrum over time was found for the

flare. The results from the analysis were presented at the 188th meeting of the AAS in Madison,

WI by P. P. Dunphy et al. in June 1996.

Phase 5. - Under PI Dr. E. L. Chupp the proposal "Multiwavelength Studies of October 91 X-Class

Solar Flares Observed by EGRET" was funded at a level of $15,000 (Supplement 3) instead of the

$52,000 requested.

Under Phase 5 the accomplishments and ongoing work are:

For the Phase 5 work, we have gathered a significant amount of correlated data for flares observed

by the EGRET/TASC. This includes the TASC spectral data for 5 X-class flares between 1991

October 21 and 1991 November 3, as well as the corresponding response functions which account

for the solar angle and the spacecraft mass. Also obtained were: Yohkoh ttXT time histories and

images for the 1991 October 27 flare, Yohkoh GRS time histories and gamma-ray line spectra

for the 1991 October 27 flare, standard GOES x-ray data and NOAA radio reports, Nobeyama
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radioreports,and ChineseAcademyof SciencesSolar-GeophysicalData. Workon this data, with
emphasison the flareof 1991October27is ongoing.

Phase 6. - Under PI Dr. E. L. Chupp the proposal "Characterization of Solar Flare Proton Spectra

Using EGRET/TASC Data" was funded at a level of $25,000 (NAG 5-3518).

Under Phase 6 the accomplishments and ongoing work are:

The goal of the Phase 6 program is to apply the analysis technique used successfully with the

EGRET / TASC energy-loss spectra for the 1991 June 11 flare to data on the remaining X-class

flares observed in 1991 June as funding permits. The first priority was to use the results from

fitting the June 11 flare spectra to constrain the flare proton spectral shape and intensity. Our

results to date demonstrate that the TASC spectral analysis contributes crucial information on the

particle spectrum interacting at the Sun. A preliminary draft of a paper describing this analysis

is attached as an Appendix. We plan to submit the paper to a refereed journal by the end of this

year. The next step in the work will be to use a similar analysis on the flare of 1991 June 4.
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1 INTRODUCTION

The likelihood of the significant production of measurable fluxes of gamma-rays and neutrons in

solar flares was investigated by a number of workers, long before the relevant observations were

available (e.g., Fireman 1963; Chupp 1963; Dolan and Fazio 1965). The potential value of gamma-

ray and neutron measurements as a probe of energetic ions generated in solar flares was pointed out

and expected fluxes were calculated in detail by Ramaty and Lingenfelter (1967) and Lingenfelter

(1969). The role of neutrons directly detected at 1 AU and gamma-rays from pion (_r) decay were

seen to be directly related to very energetic ions, because of the high threshold kinetic energy

required for their production (_ 300 MeV for both 7r's and neutrons in p-p reactions).

Solar flare neutrons were first detected directly by the SMM spectrometer on 21 June 1980 (Chupp
et al. 1985). Evidence of pion-decay gamma-rays from the same flare was reported by Forrest et

al. (1985). Several such satellite-based observations have since been made by SMM (Chupp et al.

1987), GAMMA-1 (Akimov 1991, 1994a,b), and Comptel/CGRO (Ryan et al. 1994; Rank et al.

1994, 1997). The effects of highly energetic neutrons have also been seen by ground-based neutron

monitors from a few flares (Debrunner et al. 1983; Smart et al. 1990; Shea et al. 1991; Takahashi et

al. 1991; Muraki et al. 1991; Chiba et al. 1992). In the present paper, we report on an analysis of

the response of the EGRET Total Absorption Shower Counter (TASC) on the Compton Gamma

Ray Observatory to the solar flare of 11 June 1991. We argue that the high-energy emission (> 10

MeV) detected by the TASC in the later stages of the flare is dominated by pion-decay gamma-rays

and neutrons. The appearance of this emission marks a significant change in the spectral shape of

the protons that interact in the solar atmosphere.



2 DESCRIPTION OF THE EGRET/TASC

The EGRET (Energetic Gamma Ray Experiment Telescope) is a large gamma-ray detector com-

prising a spark chamber, a NaI(T1) scintillator/calorimeter, and an anticoincidence plastic scintilla-

tor dome. EGRET was designed primarily as a telescope to image 20 MeV to 30 GeV gamma-rays

from cosmic sources with high sensitivity. The NaI calorimeter, or TASC, is a large (76 x 76 ×

20 cm 3) spectrometer which measures the total energy of gamma-rays detected by EGRET. The

TASC also has a burst/solar flare mode that records spectra in the energy range of 1 to 200 MeV

every 32.75 s independent of the spark chamber and the anticoincidence dome. More information

about the EGRET detector system can be found in Hughes et al. (1988), Kanbach et al. (1989),

and Thompson et al. (1993).

Because of its large volume and mass, the TASC has a high efficiency for detecting solar flare

gamma-rays and neutrons > 10 MeV. The EGRET, as well as the other detectors aboard CGRO,

axe not normally pointed at the Sun, except for times of high solar activity when the Sun is chosen

as a target of opportunity. Therefore the response of the TASC to solar gamma-rays and neutrons

depends on the orientation of CGRO during a particular flare. This response can be calculated

using a "mass model" that accounts for the effects of material throughout the CGRO spacecraft.

The response to gamma-rays is calculated using a standard Monte Carlo code for high-energy

gamma-rays, EGS4 (Nelson 1985). The response to neutrons is calculated with an analogous code

for neutrons, CALOR (Jensen 1990).

Figure 1 shows the calculated energy-loss spectrum in the TASC from 200 MeV neutrons. To

check the accuracy of the neutron response code, we have compared this sample calculation with

an energy-loss spectrum measured in a large NaI scintillation detector exposed to a tagged neutron

beam at 207 MeV (Dunphy et al. 1989). The comparison shows good agreement with deviations
no more than about 20% from 10 to 200 MeV.

3 DESCRIPTION OF THE OBSERVATIONS AND ANALY-

SIS

The solar flare of 11 June 1991 was one of a series of flares from active region 6659 that took place

during June 1991. Following the occurrence of two GOES X-class flares on 4 June and 6 June, the

CGRO instruments were pointed at the Sun. As a result, the active region was close to the EGRET

pointing axis (zenith angle = 14°) during the 11 June flare. This flare, which was categorized as

GOES class X12, was located at 31°N and 17°W in heliocentric coordinates (Solar Geophysical

Data).

Figure 2 shows the response of the EGRET/TASC detector to the flare emission over a range of

energy losses from 2 to 200 MeV. The net counting rate due to the flare (32.75 s time bins) has

been determined by subtracting background measured approximately 24 hours before and after the

flare, when the orbital and geomagnetic conditions were similar. A significant flare contribution



waspresentfromabout01:59UT until 02:39UT. Thecountingrateprofileshowsseveraldistinctive
featuresoverthis time period: two relativelyshortburstsfrom 01:59- 02:10,an intervalof low
countingratefrom 02:10- 02:13,andanextendedexcessafter02:13.Forpurposesof analysis,we
identifythe first intervalasphaseI, thesecondastheinterphase,andthethird asphaseII. Phases
I andII aresimilarto onesdefinedbyMandzhavidzeet al. (1996) for this flare, as we discuss below.

Phase I can be subdivided according to the two bursts into time periods of 01:59 - 02:03 (phase

I-l) and 02:03 - 02:10 (phase I-2). These time intervals are shown in Figure 2 and listed in Table

1. We note that the sharpness of time structure is limited by the TASC time resolution of 32.75s.

The separation of the data into these phases can also be justified directly from a comparison of the

"hardness" of the energy-loss spectrum for each phase. To specify the hardness, we compare the

TASC counting rate in the energy-loss range 30-200 MeV to the rate in the range 4-8 MeV. These

rates and their ratios are shown in Table 1. The ratio R(30-200)/R(4-8) is seen to be more than

an order of magnitude greater in phase II compared to the bursts of phase I, implying a significant
change in the parent particle spectra.

To specify the details of the spectral changes with time, we fit the energy-loss spectrum for each

phase with a multi-component model gamma-ray and neutron spectrum. There are five gamma-

ray components: (1) a power law in energy, assumed to be due to electron bremsstrahlung; (2) a

line spectrum from nuclear de-excitation; (3) a line at 2.223 MeV from neutron capture by protons;

(4) a spectrum (dominated by lines at ,,_ 7.6 MeV) from activation of Fe nuclear levels by neutrons

in the spacecraft; and (5) a broad "line" peaking at 67 MeV from Ir° decay plus a continuum due

to bremsstrahlung from electrons and positrons from _r+ decay. For the neutron spectrum, two

types of spectral shapes are used: (1) a neutron spectrum calculated to be produced by protons

with a power law spectrum in energy (Murphy et al. 1987) and (2) a neutron spectrum calculated

to be produced by protons with a Bessel function spectrum (Murphy et al. 1987). These proton
(and therefore, neutron) spectral shapes are related to different proton acceleration mechanisms

(Murphy et al. 1987).

The components of the model are folded through the gamma-ray and neutron response functions

described above and fit to the observed energy-loss spectra using a standard Levenberg-Marquardt

non-linear multi-parameter iterative fitting routine (Press et al. 1989). The results of the fitting

procedure are shown in Figure 3. Taking each phase in turn, we point out a number of features.

The spectra from the two bursts during phase I are quite similar, with a power-law continuum,

a significant contribution from the nuclear line de-excitation component (apparent mainly in the

energy range 4-8 MeV), and a strong neutron-capture line at 2.2 MeV. During this phase, there

is no significant contribution from pion-decay gamma-rays, solar neutrons, or Fe activation. In

fact, these components were omitted from the phase I fits shown in Figure 3. The fit to the

interphase has only two significant components: a power-law continuum and the 2.2 MeV neutron-

capture line. Again, no pion-decay or neutron component is used in the fit. Finally, the fit to the

phase II spectrum indicates a significant pion-decay and/or neutron component but no significant

power-law component. Otherwise, this fit requires all of the gamma-ray components listed above.

Unfortunately, the response of the EGRET/TASC is very similar for both pion-decay gamma-ray

spectra and high-energy neutron spectra. Therefore, we have used combinations of pion-decay

and neutron spectra based on theoretical calculations (Murphy and Ramaty 1985). The best-fit



parametersandassociateduncertaintiesfor eachof the phases are listed in Table 2. In the following

section, we discuss the implications of the differences between the spectra.

4 RESULTS AND DISCUSSION

One of the most obvious features of the evolution of the high-energy emission from this flare is

the clear hardening of the detected spectrum between phases I and II. This can be seen both in

the spectral hardness ratios in Table 1 and in the change in spectral shape in Figure 3, where

an intensification in the spectrum above 10 MeV occurs during phase II. In our fitting model,

this implies a flux of solar neutrons and pion-decay gamma-rays which were not present earlier.

Mandzhavidze et al. (1996) have already pointed out the change in spectral shape. In fact, the

change in shape is more radical than their analysis would imply. Since spectral analysis of the

TASC data was beyond the scope of their paper, they had assumed that the emission detected > 10

MeV in phase I was due to pion decay. The present spectral analysis indicates that this energy

range is actually dominated by electron bremsstrahlung. Thus the change in spectral shape is due

to the appearance of a pion-decay component. This, in turn, is due to the hardening of the ion

spectrum that produces the nuclear lines and the pion-decay emission.

The virtual disappearance during the interphase of nuclear lines that are a signature of ion in-

teractions imply that the phase I and phase II emissions are, to some extent, independent. This
could mean that the ion acceleration mechanisms or the sites of the acceleration are different. The

presence of a strong 2.2 MeV neutron-capture line during the interphase is not inconsistent with

a decrease in ion interactions, since neutron capture line emission is expected to be delayed with

respect to the de-excitation lines (Prince et al. 1983; Hua and Lingenfelter 1987).

Using the best-fit neutron and gamma-ray spectral parameters obtained from each phase of the

flare, fluences for various components can be calculated, and these are listed in Table 3. These flu-

ences can be applied to appropriate solar gamma-ray and neutron production models (e.g., Murphy

and Ramaty 1985; Murphy et al. 1987) to constrain the flare proton spectrum. In particular, the

relative fluences of the 2.2 MeV line (F2.2), the nuclear line emission in the range 4-7 MeV (F4-7),

and _r°-decay gamma-rays (Fro) can be used to constrain the energy spectrum of solar protons

that produce these emissions. In Figure 4, we plot the relevant ratios, F2.2/F4-T andF_r0/F4-T, as

a function of proton spectral shape, based on calculations by Murphy and Ramaty (1985). From

these plots we see that the proton spectral shape is consistent with a Bessel function parameter

of 0.019+0.005 for phase I-1 and 0.028±0.005 for phase I-2, but inconsistent with a power law. In

contrast, the phase II proton spectral shape is consistent with a power-law spectrum with index

2.8±0.2, but inconsistent with a Bessel function shape. This evolution in ion spectral shape is

reminiscent of the flare of 3 June 1982. In that case, Murphy et al. (1987) argued that the initial

burst of gamma-rays (and neutrons) was due to ion acceleration by a 2nd-order Fermi process,

while the time-extended emission was caused by shock acceleration.

We conclude by noting a more general similarity of the high-energy time history of this flare with

other large flaxes. In particular, the presence of an initial impulsive phase (phase I here), followed
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by a "delayed"or "extended"phasewith a harderion spectrum(phaseII here), appearto be
the rule rather than the exceptionfor the largestX-classflaresdetectedby SMM, CGRO,and
GAMMA-1 (Dunphyand Chupp1994;Akimov et al. 1991, 1994a, 1994b; Ryan et al. 1994). It is

already known that electrons (> 1 MeV) and ions (> 100 MeV) can be accelerated together over

short time scales (,,,1 s) (Forrest and Chupp 1983; Kane et al. 1986). Thus, acceleration models that

produce bursts on even shorter time scales than those in phase I have been addressed (references).
Models that explain particle acceleration and/or trapping with emphasis on ions which would be

appropriate to the phase II emission reported here have also been put forward (Ryan and Lee 1991;

Kocharov et al. 1993; Guglenko et al. 1990; Mandzhavidze et al. 1996). Given the commonness of

extended phase emission, models which do not depend on unusual or special conditions at the flare
site should be favored.
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Table1
TimeIntervalsandHardnessRatiofor Flareof 1991 June 11

Phase Start Time End Time R(4-8) R(30-200) R(30-200)/R(4-8)

I-1 01:59:15 02:03:06 2610±74 1.21±0.84 4.6(±3.2) × 10 -4

I-2 02:03:06 02:09:39 3317±52 1.41±0.58 4.3(±1.8) × 10 -4

Interphase 02:09:39 02:12:56 269±78 0.61±0.79
II 02:12:56 02:40:13 341±12 3.54±0.13 1.04(±0.05) x 10 -2

Table 2

Fitting Parameters for Flare of 1991 June 11

Parameter I-1 I-2 Interphase II

p.1. index 2.10±.12 2.32±.04 2.20±0.17 --
p.1. coeff. 0.23±.04 0.56±.03 0.16±.04 0

nucl. coeff. 1.32±.08 1.61±.06 < 0.097 0.111±.007
2.2 MeV coeff. 0.067±.004 0.157±.003 0.042±.004 0.0186±.0007

Felinecoeff. < 1.4x 10 -3 <9.2x 10-4 < 1.8x10 -3 (1.2±.2)×10 -3

pion coeff. < 2.3 x 10 -s < 9.0 × 10-6 0 (5.30 =t: .13) x 10 -s

neutron coeff. 0 0 0 5.3 x 10 -5

Note: Upper limits are la. Values in bold print were held fixed.

Table 3

Fluences and Proton Spectral Parameters

Phase F4-T F2.2 F=o F2.2/F4-7 F,_o/F4_7 aT s

I-I 21.7±1.8 19.8±1.2 < 0.063 0.91 < 0.029 0.019 --
I-2 43.5±2.3 72.8±1.4 < 0.044 1.67 < 0.010 0.028 --
II 13.1±0.8 30.1±1.1 17.5±0.4 2.30 1.34 -- 2.8

Note: Upper limits are I_. Fluence units are cm -2.



FIGURE CAPTIONS

Figure 1. Monte Carlo simulation of the response of the EGRET/TASC to 200 MeV neutrons.

Responses to both a cylindrical beam of neutrons which extends outside the EGRET envelope

(solid line) and a thin pencil beam (dashed line) axe shown.

Figure 2. Time history of the response of the TASC during the flare of 11 June 1991 in several

energy-loss bands. Background has been subtracted. Demarcations of the phases discussed in the

text axe shown.

Figure 3. Plots of the energy-loss spectra (background subtracted) observed by the TASC. The

spectra were fit with a multi-component model spectrum described in the text.

Figure 4. The fluence ratios F2.2/F4-7 and F_0/F4_7 are plotted for two proton spectral shapes:

(a) a Bessel function in energy characterized by parameter aT and (b) a power law in energy with

index -s. The curves are theoretical values based on calculations by Murphy and Ramaty (1985).

The thickened sections correspond to the values observed for 3 time periods (I-l, I-2, and II) during

the flare of 11 June 1991.
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Figure 3.
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